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A method for solving the equations of radiative transfer for stratified inhomogeneous media 
is described. Spherical harmonics are used to simplify the Boltzmann transport equation; and 
a truncation scheme is implemented which essentially results in a system of equations with 
reduced stiffness. A response matrix formalism is developed to decouple the boundary 
conditions for the radiance moments from the differential equations describing the 
propagation properties of the medium. Several numerical examples are given. 0 1985 Academic 

Press, Inc. 

1. INTRODUCTION 

Numerous methods exist for solving the problem of radiative transfer for a 
collimated beam of radiation incident upon a homogeneous scattering medium with 
one or two planar boundaries. A standard technique is to use spherical harmonics to 
solve the Boltzmann transport equation. This reduces the integro-differential equation 
into an infinite set of coupled linear differential equations of first order. 

In a recent publication [ 11, henceforth referred to as WS, we described a novel 
approach for solving these coupled equations when the scattering is arbitrarily 
anisotropic. Anisotropic scattering means that the radiation is preferentially scattered 
through certain angles (usually small). However, the medium is still isotropic, which 
means that the individual scattering events are independent of the radiation’s spatial 
orientation. 

When the medium is inhomogeneous, conventional methods for finding solutions 
with exponential decay no longer apply. In this paper we describe a numerical 
technique that gives scattering solutions in such media with planar symmetry. Our 
method makes it possible to solve the differential equations describing propagation of 
radiation through the stratified medium without reference to the boundary conditions. 
The resulting system of equations can be quite stiff, and therefore difficult to solve 
numerically. However, our technique for making the transition from low to high 
degree moments permits one to use a lower order approximation, thereby reducing 
the stiffness of the problem. Only after the propagation characteristics of the medium 
have been determined do we use the boundary conditions to specify the full solution. 
By utilizing the formalism of WS, this technique provides good results even when the 
scattering is highly anisotropic. 
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We demonstrate the method by solving the transient radiation field at shallow 
depth. This suffices to show how we manage the very large number of moments that 
occur in cases with small angle scattering. Further development is required to extend 
the method beyond several scattering lengths, where numerical instabilities are a 
serious problem. 

As in WS, we adopt the terminology and notation appropriate for light scattering. 
Hence, our field quantity is radiance, which is defined as the power per steradian per 
unit area normal to the direction of observation. Translation of our terms into 
languages appropriate to other areas of study should be straightforward. 

Section 2 discusses the general theory and explains how the Boltzmann equation 
sequence is truncated. Section 3 develops the response matrix formalism which 
facilitates easy solution of the differential equations. Section 4 describes various types 
of boundary conditions that can be used. Section 5 describes a few numerical 
techniques that were used in the calculation of the examples presented in Section 6. 

2. GENERAL THEORY [2] 

A collimated beam is incident at angle 6 upon the planar boundary of a scattering 
medium. The medium’s properties are specified by the absorption rate a and 
scattering function a; LX is the fractional loss of radiance per unit length along any 
ray and o(v) is the fraction scattered through angle IJI per unit length per unit solid 
angle, independent of orientation. The z-axis is normal to the boundary surface and 
all quantities are independent of x and y coordinates. The inhomogeneity of the 
scattering medium is expressed as a dependence of the scattering and absorption 
functions on z. We solve for radiance, L(z, 8,4), measured in the direction (0, 6) at 
position z. 

We expand the scattering function and radiance in terms of spherical harmonics 

m 2n+l 
u(z, w) = c 

n=O 
-yg-- S,(z) P,(cos VI 

and 

L(z,8,#)= f ‘f (2 -s,,,)~ ;; ;I;; L:(z) Py(cos 0) cos rn# (2) 
m=o n=m 

where the Pr are the associated Legendre functions of order m and degree n. The 
moments of o and L are 

S.D)=2njl a@, w) P,(cos w) d cos w (3) 
-1 
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and 

L%)= j L(z, 8, I) Pr(cos 8) cos mQ dw (4) 
sphere 

where do = d# d cos 0. 
In terms of these moments, the time independent monoenergetic Boltzmann 

equation for radiative transfer can be expressed as an infinite set of adjacently 
coupled differential equations for each value of m: 

(n-m + 1) gLiF+l(z)+ (n+m) gL;-,(z)+ (2n + l)A,(z)L;(z)=O (5) 

where A,, is defined by 

A,(z) = (a + S,) - S, = a(z) - S,(z) (6) 

and a(z) is the total beam attenuation rate (absorption plus scatter). 
Many techniques exist for solving the Boltzmann equation when the A, are 

independent of z. A common practice is to truncate the infinite system of Eq. (5) at 
some value n = N. We then have a system of N - m + 1 equations that can be solved 
by standard analytic techniques for the low degree moments of order m. 

In some formulations of radiative transfer, the spherical moments contain only the 
scattered radiation while the unscattered beam is a source term that feeds the 
scattered field. For nearly isotropic scattering this greatly reduces the number of 
harmonics required. However, in our case the forward scattering is so pointy that 
high harmonics are required in any case, and so we expand the total radiance in 
harmonics to avoid the use of source terms. When the results are transformed back to 
angular distributions the computer does not have to transform the d-function 
component because it is easily recognized and subtracted out; see Appendix A. 

The WS method terminates the Boltzmann equations in a way that provides 
expressions for high-degree moments which join naturally onto the sequence of low- 
degree solutions. Moments of low degree are calculated in the coordinate system with 
z axis perpendicular to the boundary surface, and all orders with m < N are included. 
The moments of high-degree are calculated in a rotated coordinate system with z axis 
pointing in the direction of the source. In this frame of reference only the zero order 
(axi-symmetric) moments are needed, as discussed in WS. 

To truncate the Boltzmann sequence (Eq. (5)), we solve the well-known recurrence 
relation 

(n-m+ l)p~+:+,(?)+(n+m)P~-:_,(r)=(2n+ l)VX?), q =cos ( (7) 

for the quantity (2n + 1) and substitute the resulting expression into Eq. (5) to get 

(n-m+ l)(i~+,+R~A,L~)+ (t~+rn)(i~-~ +QzA,L;)=O (8) 
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where 

RI’ = P;+ ,t~MPXv) and e: = PC- ,(?YVXrl) (9) 

and we have adopted the notation i = aL/dz. 
We show that for n sufficiently large the two terms of Eq. (8) vanish separately: 

L ‘f-1 + Q;A,L:: = 0 (10) 

L ‘;+, + R;A,L; = 0. (11) 

Then we use Eq. (10) with n = N as the final equation of the truncated sequence. This 
is our P; approximation in which the truncation depends on the angle of incidence 
through q in Eq. (9): 

As n-1 co, A,,-+a, and 

cxrl) z Lf+- 
r 

exp - 
[, 0 

a(z’) $ 
1 

. (12) 

This merely represents a beam of unit irradiance decaying at the rate a along the 
beam, dz’/q being the slant path length. Substituting this expression into Eqs. (10) 
and (11) shows that they are satisfied. This establishes the validity of the approx- 
imation in the large 12 limit, but we can do better than this. Various examples suggest 
that Eqs. (10) and (11) are often adequate approximations for quite moderate values 
of N, say 3 to 7, especially when the cause of the high harmonic content is a peak in 
the scattering function either in the forward or backward direction. 

In the case of a forward peak, recall Eqs. (6) and (3) and the fact that P,(l) = 1. 
For harmonics dominated by this peak, the form of Eq. (3) shows that the A,, series 
varies gradually so that A,, x A, + i . Then we use 

L, = (P,h) ev -1 (A,A,+ $/* dz’/q 1 . (13) 

This is a rather obvious generalization of a well-known small-angle approximation 
[3] for a homogeneous medium, namely exp(-A,z), except that we claim a bit more 
accuracy using (A,A,+ i)l’*. Substitution in Eq. (10) shows that it is satisfied to the 
extent that 

At!!, exp [-I (An-lAn)“2 WV] =A!/* exp [ -1 (AnAn+,)“* ~$1, (14) 

which is valid because An-,zAnzA,+,. A similar approximation applies to 
Eq. (11). (In comparing exponents, note that A,- 1 z A,, i is usually a particularly 
good approximation because the Legendre polynomials P, _, and P, + 1 have the same 
parity.) 
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As another example, consider reverse scatter, in which the only scattering angle is 
180°. This is the extreme case of a backscatter peak, and for the homogeneous case 
(A, constant with z), it offers one of the few test cases in which an exact closed-form 
solution is known. This example is easily solved without spherical harmonics, but the 
result may be expressed in spherical moments anyhow to use as a comparison. 
Equations (D9) in WS gives 

L,= WI/:, p, 
Ai/2 +A;z, j- exp -(AnAn* 1)“’ $1 

where A,,+* = A,-, exactly in this case. Substitution in Eqs. (10) and (11) shows that 
they are exactly satisfied. (For the inhomogeneous case, we would put an integral in 
the exponent and get an approximation with some range of validity, but this is 
beyond the scope of this paper.) 

The two examples above indicate that Eqs. (10) and (11) are fortuitous approx- 
imations since the forward and backward scattering peaks are the ones that occur 
most commonly in nature. We expect that these equations would work poorly for a 
90° peak (since A,, 1 &A,- ,), but we have not investigated this because we are 
unaware of an application. 

3. Low DEGREE EQUATIONS 

We now return to the equations for the low degree moments. For each value of m 
we have Eq. (5) for m ( n < N and Eq. (10) for n = N. Since the A, depend upon z, 
we must use numerical techniques to solve for the L:(z). However, the sets of 
equations are both stiff and unstable and therefore difftcult to integrate. One may 
gain an intuitive grasp’ of these difftculties from the homogeneous case in which the 
A,, are cosntant with z. Solutions have the form 

for several eigenvalues of k. The greatest k depends on N. The lobe width of Pt 
corresponds to angular resolution of about x/N and includes rays that propagate this 
close to horizontal with slant paths elongated (from vertical) by the factor 
sec(lr/f - Z/N) z N/K. Such rays decay with z at rates as large as k,,, = aN/n = 
a/(ang. res.). At the other extreme, the least k lies between 1x and a and represents the 
smooth equilibrium distribution at great depth. So for a few degrees of angular 
resolution the eigenvalues, i.e., the exponents in the solution, may vary by a factor of 
50. This wide range causes problems called stiffness. No one scale length is suitable 
for incrementing the solution, and a very small range of boundary conditions give 
usable solutions. Moreover, the negatives of k are also eigenvalues since the radiance 
can propagate either way (kz). This causes the set of equations to be numerically 
unstable because the slightest numerical imperfection is a source term that generates 
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many eigenvalues, including those that grow at the most rapid exponential rates and 
overwhelm the desired solutions. 

The Pt approximation that we use truncates the coupled set of equations at a 
much smaller N, say 3 to 7, and so the range of exponents is an order of magnitude 
smaller. The equations remain stiff and unstable, but not nearly as much so. The 
same numerical fixes can be applied, e.g., the GEAR algorithm, or the methods of 
Feautrier or Rybicki [4]. However, we demonstrate that these fixes are unnecessary 
for problems in which the inhomogeneous layer extends only a few (3 or 4) 
attenuation lengths. These improvements may not be significant to workers who have 
ready access to a mainframe computer and a working algorithm. But for others the 
simplification can be significant. We used an antique microcomputer, the HP 984514. 
In some instances a programmable desk calculator has sufficed. 

To integrate the truncated Boltzmann equations for the L:, we require a starting 
value at the boundary for each radiance moment. However, the radiance at the top 
surface is of the form 

L(0, e, 4) = Li”ye, 4) + Lby3, $4) (17) 

where Lint is the radiance of the incident beam and Lback is the radiance that has 
been backscattered by the medium. Although Lint is given, Lback is part of the 
solution to be determined. In fact, it depends on the conditions at the second 
boundary. Therefore, we need a method that bypasses these two interdependent sets 
of boundary values. 

We define matrix functions Y”(z) that express the mth order radiance moments at 
depth z in terms of the values at the initial boundary surface 

L;(z) = f Y;,,(z) LF(z = 0). (18) 
r=l?l 

The boundary values for the elements of these Y”(z) are simply 

YfJz = 0) = a,,,. (19) 

Substituting Eq. (18) for the L:(z) into the truncated Boltzmann equation 
sequence, Eqs. (5) and (lo), gives us 

& [@- m + 1) f C+l,, + (n + m) i YZ-,,, + (2n + 1) A, rf,, 
I 

L;(o) = 0 

for m< n <N (20a) 

YNm,r LX01 = 0 for n=N (2Ob) 

where the explicit z-dependences of the A’s and Y m are deleted for convenience. 
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Since these equations must hold for aribtary incident radiance distributions, the 
bracketed expressions must be identically zero for each value of r. Therefore, we have 
found a set of differential equations which can be solved numerically to give the 
response matrices Y”(z) without requiring any boundary conditions on L. And so 
the introduction of the Y” matrices has simplified our task immensely by decoupling 
the Boltzmann equations for inhomogeneous media from the boundary conditions for 
the radiance moments. First, we solve the propagation problem characterized by the 
Ym(z); and then we impose the appropriate boundary conditions at the top and 
bottom surfaces. 

When N - m is odd, the relations extracted from Eqs. (20) can be manipulated to 
give expressions for the derivatives of each element of Y”(z). Letting Y(z) = aY/az, 
the first (n = m) and last (n = N) equations can be written 

‘m r m+l,r = -(2m + l)A, r;,, 

f,“-,,, = -QNm& G,v 

Now we use the equations for n = m + 2 and n = N - 2 to get 

P-4 

(2lb) 

f:+3,r= -W + 1) fi+,,, + (2m + 5) Am+2 G+2,rY3 (224 

r * :-3,r = ((N - m + 1) f,“-,,, + (2N - 3) A,-, YNm-2,r)/(N + m - 2). (22b) 

Equations (21a) and (21b) can be inserted in the right side of Eqs. (22a) and (22b), 
respectively. Continuing this procedure, we see that the derivative of every element 
can be expressed in terms of other elements and the A,,. We start with Eqs. (21a) and 
(21b) and then iterate through the following equations for j = 1 to (N - m - 1)/2: 

*m r mn+U+ I,r = -(2(m +A fi+zj-l,r + Pm + 4j + l)Am+, rZ+~,,)/G? + 1) (22~) 

f:-2/-l,r= -((N--m-2j+ 1) f:-2j+l,* 

+ (2N- 4j + l)A,-, rNm-2j,r)/(N+ m - 2j) (224 

each time replacing the derivative on the right hand side with the result of the 
previous iteration. 

For example, in a Pt calculation, the equations are 

f+-AJ& f:,, = -Q% r;,, 

f;,,. = -(2 f:,, + 5A2 r;# = (u. r:,, - 5A2 r:,,)/3 
f;,, = -(4 f:,, + 7A, Y;,,)/3 = (4Q:A, Y;,, - 7A, Y;,J3 

fi,, = -(4 fi,, + 9A, I’!,,)/5 = (2OA, r!,, - 8A, rt,, - 27A, ri,,)/15 

r ’ :,, = -(2 f;,, + 3A, Y;,,) = (14A, Y;,, - 8Q;A5 Y;,, - 9A, r;,,)/9. (23) 

These equations can be solve by some standard iterative numerical integration 
routine to get values of the Ym at depth z. 

581/57/l-10 
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If N- m is even, Eqs. (20) comprise a singular system of equatons which cannot 
be inverted for the f. Hence, the method fails in this case. 

4. BOUNDARY CONDITIONS 

Once the Y”(z) are known, the only task remaining is to determine the values of 
the low degree radiance moments at the boundary surface. We now describe a set of 
boundary conditions appropriate for a slab of finite thickness. We also discuss 
conditions for an infinite slab, or half space. It is not our intention to provide an 
exhaustive study of boundary conditions in general; we are only concerned with 
demonstrating the utility of the Y” formalism in a few specific examples. 

4.1. Finite Slab 

We consider a slab of thickness Z, surrounded by vacuum. The boundary 
conditions that we use are the Marshak conditions [5] appropriately oriented for each 
of the vacuum-scatterer interfaces. These conditions follow from the assertion that, 
since the vacuum does not produce any backscatter, the scattered radiance at each 
surface is zero in the out-looking direction. For example, looking up from the top 
surface Lback = 0 and Eq. (17) gives 

If we express both 
difference is equal to 

L(z = 0, e < 900,#) = Lye, 4). (24) 

of these functions as spherical harmonic expansions, their 

@f’(O) - Lym’) 

X P;‘(u) cos m’# = 0 (25) 

where ,u = cos 9. 
Multiplying this equation by P:(B) cos m# and integrating over the up-looking 

hemisphere, we get 

X (L:‘(O) - L’“‘*f’) P:‘(a) P:(u) cos m’# cos 1124 

where [6] 

G,r = (’ WP) m.P) 9 = 
P:: + ‘(0) P?(O) - P;(o) PT + ‘(0) 

(n - r)(n + r + 1) * (27) 
0 
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K:,r is easily computed by using the relation 

(28) 

Equation (26) is used for various values of r, between m and N, inclusive, each 
value providing one equation for the unknown surface radiance moments. However, 
since the P: constitute a doubly complete basis when integrated over a hemisphere, 
we can only get one-half of the N - m + 1 linearly independent relations needed to 
fully determine all the L:(O). 

The other half of the equations can be derived from Marshak conditions at the 
lower boundary. There is no radiation from the vacuum incident on this face of the 
scatterer. Therefore, we have 

L(z=z,,e>90°,))=o. (29) 

Once again we express L in terms of spherical harmonics and multiply by 
Py(,u) cos m#. However, we now integrate over the down-looking hemisphere to get 

The factor (- 1)” +’ follows from the fact that 

P;(u) = (-l)m+n PZ(-p). 

(30) 

(31) 

We now substitute Eq. (18) for Lt(Z,) in Eq. (30). The result is 

This equation constitutes the other half of the conditions that, in conjunction with Eq. 
(26), determine the surface values of the radiance moments. 

The summations over n in Eqs. (26) and (30) should run to infinity. However, the 
impracticality of such a calculation requires termination of the summations at some 
finite number of terms. The simplest solution uses just the low-degree moment terms 
and stops at n = N. Additional terms for the effects of high-degree moments can be 
included if N is particularly small or if higher precision is desired. 

We must also decide which values of r are to be used in Eqs. (26) and (32). We 
follow the usual procedures of using those values of r such that m + r is odd. (These 
harmonics vanish at 8 = 90”; thus, they ignore the rather meaningless rays that skim 
the surface in favor of those that penetrate.) 

4.2. Half-Space 
When the slab’s thickness is infinite, the Marshak conditions can still be applied at 

the boundary of the half-space, and the resulting equations will be the same as Eq. 
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(26). However, the lack of a lower boundary necessitates our finding conditions to be 
imposed on the asymptotic forms of the radiance moments. Assuming that the 
medium gradually becomes homogeneous, i.e., A,(z + co) = constant, we expect that 
in the large z limit the solutions will take the form of the decay eigensolutions 
appropriate for a homogeneous medium specified by the limiting values of the A,. 

In order to develop this idea further, we briefly review the formalism of these eigen- 
solutions as developed in WS. For a homogeneous medium, we showed that the 
radiance moments can be expressed in the form 

L;(Z) = C B(kj) Cy(kj) exp(-k,z) 
i 

(33) 

where the Cr(k,) are eigenvector solutions of Eqs. (5) and (10) associated with the 
decay eigenvalues kj. In a P: approximation, the C(k,) are (N- m + 1)-dimensional 
vectors and there are (N- m + 1)/2 values of k*. The summation over j is a 
summation over the distinct eigensolutions, with the contribution of each eigen- 
solution being specified by the B(kj). Each C(k,) has a conjugate vector c(k,) such 
that 

5 c;(k,) A,, C;(k,) = Ha,, (34) 
n=m 

where H is a normalization constant. The weighting factors, B(k,), can then be found 
by multiplying Eq. (33) by cy(k,) A,H-’ and summing over n: 

N 

B(h) e- kiz = H- 1 c ~W,) A&S). r (35) 
ll=tll 

The decay eigenvalues come in f pairs. In WS, we showed that for each eigen- 
vector Cf(kj) decaying exponentially as e +’ there also exists an exponentially 
increasing eigensolution C~(-kj) e+‘j’ where Cr(-kj) = (-1)” Cy(kj). However, 
these solutions must be deleted since the radiance must go to zero at z = co. 

If we now return to the inhomogeneous half-space, it is clear that in the 
homogeneous limit we must have no contribution from the eigensolutions of the 
asymptotic region that grow exponentially. In other words, the weighting factors for 
these physically inadmissable solutions must be zero, i.e., 

lim B(-k,) e+@ = H-’ 5 c;(-k,) A,L;(z -, co) = 0. (36) I-KC n=m 

Substituting (-1)” f?f(ki) for cr(-k,) and Eq. (18) for Lz, Eq. (36) becomes 

r.t’m $‘m C-1)” %d An CY,r(z -, ao) LX3 = 0. (37) 

This equation is used for each of the (N - m + 1)/2 positive k,. Therefore, Eq. (37) 
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provides one-half of the equations necessary to determine the surface radiance 
moments. As was mentioned before, the other half of the equations come from Eq. 
(26). 

Now, although Eq. (37) looks adequate for our needs, we must recall that the 
Y”(z) can only be solved numerically, and hence the quantities ry,Jz + co) are not 
obtainable in practice. However, if the half-space becomes homogeneous at some 
finite depth, i.e., if A(z > 2,) = constant for some finite Z,, then Eq. (37) can be used 
by putting z + co = Z,. 

In this way, we can analyze the problem of a homogeneous half-space covered by 
an inhomogeneous slab of finite thickness. We solve the response matrix for the 
inhomogeneous region and then use Eq. (37) at the slab-half-space interface. Since 
the medium is homogeneous beyond this interface, the radiance moments begin to 
decay exponentially as the WS propagation eigenvectors of the half-space and take 
the asymptotic forms expected. In fact, the deep field solution can be expressed in the 
form of Eq. (33) by using Eq. (35) at the interface. 

5. COMPUTATIONAL TECHNIQUES 

Once the radiance moments have been determined, we must reconstruct the 
radiance according to Eq. (2). However, this involves two infinite summations which 
make the calculations non-trivial. In this section, we outline several techniques that 
greatly simplify the computations. 

As was mentioned in Section 2, the high-degree moments are calculated in a 
rotated coordinate system with z-axis aligned in the direction of the source. In this 
reference frame, only the zero-order moments are needed and so Eq. (2) becomes 

4qz,8, fj)= 5 i (2 - 4mP + 1) 
(n-m)! 

m=O n=m 
(n + m), JZW CXcos 0) ~0s m# 

co 
+ .=T+ 1 (2n + 1) L;(z) P,(cos C cos 19 + sin C sin e cos 4) (38) 

where the prime denotes that the high-degree harmonics are calculated in the rotated 
frame, and the argument of P in the second sum is the cosine of the polar angle from 
the source axis. 

We still have an infinite sum over n remaining. In WS, we terminated this sum by 
convolving the radiance with a narrow blur function. This function must be very 
narrow for angles near a sharp peak but may be broad for diffuse backscatter. The 
convolution is effected by multiplying the radiance moments by the corresponding 
moments of the blur function. 

We have also developed another method that has better convergence properties. 
First, each term in the sum is expanded in powers of S,z. Then all terms of a given 
order in S,z are grouped together. Finally, analytic expressions are found for the 

581/57/l-11 
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transforms of these groupings. The analysis can be continued to any order desired, 
depending upon the convergence rate required and the perseverance and cleverness of 
the researcher. This method is elaborated in Appendix A. 

Because we use delta-function sources, the solutions we find contain delta-function 
components corresponding to unscattered radiation, namely L i”c exp(-az/r). It is 
poor practice to leave this in the numerical transform, since its high harmonics 
merely generate numerical errors. Therefore, we subtract it out of Eq. (38) before 
transforming. 

6. NUMERICAL EXAMPLES 

We present three examples that apply the techniques described in the previous 
sections. The first is a contrived test case for which the exact solution is known, and 
provides a verification of the method. We then present two examples with a realistic 
scattering function. In one case, we work with a finite slab; and then we look at the 
problem of a homogeneous half-space covered by such a slab. 

It should be pointed out that we have not greatly concerned ourselves with the 
intricacies of performing the required numerical integrations to great depth. All of the 
examples presented in this section were calculated using a simple fourth order 
Runge-Kutta algorithm, with no specific modifications for dealing with stiffness. For 
problems where the integrations’ stability is an important factor, modifications of the 
basic matrix equations may be required to get useful solutions. 

6.1. Test Case 

We begin this example by arbitrarily specifying what the radiance distribution is 
throughout the slab. Equation (5) can then be used to give expressions for the A,(z). 
We must work this example with the radiation at normal incidence (r~ = 1) so that 
Lf = 0 for m # 0. Otherwise we would have a different set of A,(z) for each value 
of m. 

At the top surface, we take the radiance to be 

where p = cos 8, q = cos [ and H(u) is the step function 

H(p)=; P>O 
3 p < 0. 

At the bottom surface, we take the radiance to be 

W,, bz4> = (1 - sin 4 H01). 
These surface distributions are plotted in Fig. 1 (solid line). 

(40) 
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FIG. 1. Radiance distributions for slab of section 6.1. az = 0, 0.5, 1.0. Pi approximation. 

The choice of these distributions is arbitrary: we simply selected functions that are 
somewhat plausible and can easily be expanded in spherical harmonics, as 
demonstrated in Appendix B. 

For simplicity, we let L,(z) vary linearly between the two limits in Eqs. (39) and 
(40): 

L,(z) = L,(O) + zD,, . (41) 

In other words, aL,/i?z = D, is a constant, given by 

Dn = [L(Zo) -L(O)l/Zo. (42) 

Substituting Eq. (41) for the L, into Eq. (5), we get the Boltzmann equation in the 
form 

(n + l)D,+, + nD,-, + (2n + l)A,(z)[L,(O) + zDn] = 0. (43) 

We can now solve for the ,4,,(z): 

Aa(z) = - 
(n + l)Dn+1+ @,-I 
(2n + l)[L,(O) + zD,] ’ (44) 

The scattering function o(v) given by Eq. (1) for these A, is probably unphysical 
with negative values for some w; but we do not care since our only purpose is to 
provide a mathematical demonstration of the accuracy of the approximations used. 

Figure 1 displays the radiance distribution calculated from a Pt approximation 
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using Eqs. (23). The three polar plots give radiance for the top surface, the midplane, 
and the bottom, respectively. At the top, results of Pi and Pi approximations are also 
included for comparison. 

6.2. Finite Slab 

We now work the problem of a slab of unit thickness with scattering function given 
by 

Q(Z, w) = ( 1 y [2(1 - cos I//)] -“2, o<z< 1, (45) 

and LI = 1. This function has a strong peak for scattering in the forward direction 
(w = 0); in fact, it is an integrable singularity. This generates many high harmonics 
that demonstrate the utility of the method. 

Another reason for using this function is the simple form of its moments. Using 
Eqs. (3) and (6), we find that 

3 - 22 
S,(z) =m and A”(Z) = 

8n + 1 - 4nz 
2n+l * (46) 

We use an incident radiance distribution of the form 

(47) 

At normal incidence this becomes 

FIG. 2. Radiance distributions for normal incidence (C = 0) on slab of unit thickness with (I given by 
Eq. (45). 01z = 0, 0.5, 1.0. Pi approximation. 
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We then use these normal incidence moments in the Marshak conditions of Eqs. (26) 
and (32). 

The results of a Pi approximation are plotted in Fig. 2. The radiance distributions 
are shown at both boundaries and midway through the slab. At the bottom surface 
there is a noticeable amount of noise in the outlooking direction. This can be 
attributed to having neglected the terms for high-degree moments in the boundary 
conditions at this surface. These noise lobes could be reduced by using a higher N 
approximation or by using high-degree terms in Eqs. (32). 

6.3. Half-Space 

We now look at a half-space with the scattering function given by Eq. (45) for 
z ,< 1, and for z > 1 a(z, w) = (4n)-’ [2(1 - cos w)]-“* = ~(1, w). In both regions, 
a= 1. 

This is equivalent to the problem of a homogeneous half-space covered by the slab 
of the last example. 

Following the arguments of Section 4.2, we can calculate the asymptotic decay 
eigenvectors by using the techniques of WS with the A,(z = 1) =A,(oo). The 
boundary conditions of Eq. (37) can then be used, along with the top-surface 
Marshak conditions of Eq. (26), to determine the radiance moments. 

We computed the radiance resulting from a collimated beam (Eq. (47)) incident on 
the half-space at C = arc cos n = 40”. Figure 3 shows polar plots in the plane of 
incidence at the top of the slab, the midpoint, and the bottom. A simple but useful 
check of the results follows from the principle of reciprocity. According to this prin- 
ciple, the value of the radiance should remain unchanged under an interchange of the 
source and detector. Several points are included in Fig. 3 which indicate that the 
computed results are consistent with reciprocity. 

FIG. 3. Radiance distributions in the plane of incidence for C = 40”. Medium is the half-space 
described in Section 6.3. az = 0, 0.5, 1.0, Approximations: Pt, Pi, P:, Pi, Pi. 
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APPENDIX A 

Consider the infinite sum 

f(p)= 2 s P,(p) epAnr. 
?I=0 

(‘41) 

Apart from a few terms of low degree, this is the same sum that must be evaluated 
numerically [see Eq. (38)]. Using Eq. (6) we have 

If each term in the square bracket is summed over n separately, the convergence is 
more rapid for the higher powers of (S,z). The first two terms, which converge 
especially slowly, are recognized as 

O” 2n+l c n=O 
7 PJp)[ 1 + S,z] = S(1 -P) + za(8). 

So we subtract off this part and compute Eq. (Al) in the form 

f(u) = e-“‘[a(1 -cl) + zo(8)] 

O” 2n+l 
+c 

fl=O 

4n P,@)[e-“n’ - e-=‘(l + S,z)]. 

643) 

We have continued this sort of analysis up to the (S,Z)~ and (S,Z)~ terms in Eq. 
(A2), when considering the scattering function of Eq. (45). We inserted the moments 
given in Eq. (46) into Eq. (A2); and found functions with transforms that displayed 
the same dependence on n as the quadratic and cubic terms in the sum. Of course, 
this continuation to higher orders in the expansion parameter depends upon the form 
of the specific scattering function being considered and can get very complicated. We 
are presently compiling a table of transforms that may be useful for this sort of work, 
and we hope to include it as part of a future publication. 

APPENDIX B 

In this appendix, we calculate the moments of the boundary radiances given in 
Eqs. (39) and (40). 

It proves helpful to first consider the integral 

I; = ’ P;(p) dp. 
I 0 

(Bl) 
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We begin with the recurrence relation 

(n -m + 1) P;+:@) + (n + m) fy-,lj4) = (2n + 1)/P;@) 

and the derivative formula 

(1 -y’) -$ Pt@) = (n + 1) H:(U) - (n - m + 1) Pr+ ,(D). 

Integrating these from 0 to 1 and using Eq. (Bl) gives 

(n-m+l)I~+,+(n+m)r~-:_,=(2n+l) j~@:@)dp 

and 

J1 (1 -P’> (f 
0 

P:~J) ~~=(n+l)J1~~~lu)~-(n--rn+l)l:+ ) 
0 

Integrating by parts on the left side of this last equation gives us 

I‘ 
1 

pPf@) dp = [(n - m + 1) I:+ I - P:(O)]/@ - 1). 
0 

Substituting this expression into Eq. (B4), we get 

P ?I+1 = 
(2n + 1) P;(O) + (n - l)(n + m) I?-i 

(n+2)(n-m+l) * 

I’ 

153 

032) 

(B3) 

P4) 

VW 

Pm 

037) 

This recursion formula, along with Eq. (28), can be used to find the various 1,” that 
are needed. 

Now we return to the boundary expressions. First, we solve for the moments at the 
top surface. From Eqs. (39) and (Bl) 

= p,(r) + t-1)” J’ P,cU) 9 
0 

= P,(l) + (-1)” 1:: 

where, from Eq. (B7), 

6, for n even 
I:: = 

I 
(Y&-l)/2 (n _ 23 

(n + l)!! 
for n odd. 
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For the lower boundary, we use Eq. (40) to find 

L,(z) -=1; P&) 4 -I,’ (1 -P2Y2 P,(u)& 2x 

Using the recurrence relation 

P:,+&)-Pf,-,cp)= (2n + 1)(1 -p*y* P&t> 

we see that 
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